首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7637篇
  免费   736篇
  国内免费   514篇
化学   1510篇
晶体学   59篇
力学   4493篇
综合类   103篇
数学   791篇
物理学   1931篇
  2024年   4篇
  2023年   49篇
  2022年   94篇
  2021年   246篇
  2020年   208篇
  2019年   131篇
  2018年   160篇
  2017年   231篇
  2016年   285篇
  2015年   225篇
  2014年   286篇
  2013年   507篇
  2012年   298篇
  2011年   366篇
  2010年   301篇
  2009年   371篇
  2008年   391篇
  2007年   457篇
  2006年   471篇
  2005年   406篇
  2004年   408篇
  2003年   336篇
  2002年   255篇
  2001年   285篇
  2000年   261篇
  1999年   223篇
  1998年   182篇
  1997年   187篇
  1996年   188篇
  1995年   155篇
  1994年   134篇
  1993年   134篇
  1992年   113篇
  1991年   98篇
  1990年   64篇
  1989年   54篇
  1988年   49篇
  1987年   56篇
  1986年   47篇
  1985年   34篇
  1984年   26篇
  1983年   19篇
  1982年   35篇
  1981年   21篇
  1980年   9篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1973年   3篇
  1957年   4篇
排序方式: 共有8887条查询结果,搜索用时 15 毫秒
51.
Sweet cherries (Prunus avium L.) are among the most appreciated fruits worldwide because of their organoleptic properties and nutritional value. The accurate phytochemical composition and nutritional value of sweet cherries depends on the climatic region, cultivar, and bioaccessibility and bioavailability of specific compounds. Nevertheless, sweet cherry extracts are highly enriched in several phenolic compounds with relevant bioactivity. Over the years, technological advances in chemical analysis and fields as varied as proteomics, genomics and bioinformatics, have allowed the detailed characterization of the sweet cherry bioactive phytonutrients and their biological function. In this context, the effect of sweet cherries on suppressing important events in the carcinogenic process, such as oxidative stress and inflammation, was widely documented. Interestingly, results from our research group and others have widened the action of sweet cherries to many hallmarks of cancer, namely metabolic reprogramming. The present review discusses the anticarcinogenic potential of sweet cherries by addressing their phytochemical composition, the bioaccessibility and bioavailability of specific bioactive compounds, and the existing knowledge concerning the effects against oxidative stress, chronic inflammation, deregulated cell proliferation and apoptosis, invasion and metastization, and metabolic alterations. Globally, this review highlights the prospective use of sweet cherries as a dietary supplement or in cancer treatment.  相似文献   
52.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
53.
Myrciaria dubia (HBK) McVaugh (camu-camu) belongs to the family Myrtaceae. Although camu-camu has received a great deal of attention for its potential pharmacological activities, there is little information on the anti-oxidative stress and anti-inflammatory effects of camu-camu fruit in skin diseases. In the present study, we investigated the preventative effect of 70% ethanol camu-camu fruit extract against high glucose-induced human keratinocytes. High glucose-induced overproduction of reactive oxygen species (ROS) was inhibited by camu-camu fruit treatment. In response to ROS reduction, camu-camu fruit modulated the mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NFAT) signaling pathways related to inflammation by downregulating the expression of proinflammatory cytokines and chemokines. Furthermore, camu-camu fruit treatment activated the expression of nuclear factor E2-related factor 2 (Nrf2) and subsequently increased the NAD(P)H:quinone oxidoreductase1 (NQO1) expression to protect keratinocytes against high-glucose-induced oxidative stress. These results indicate that camu-camu fruit is a promising material for preventing oxidative stress and skin inflammation induced by high glucose level.  相似文献   
54.
PBO fiber is one of the most promising reinforcements in resin matrix composite because of its excellent mechanical properties. However, the inert and smooth surfaces make it the poor interface adhesion with resin matrix, which seriously limits the application in composites. In this article, we report a method to modify the surface of PBO fibers with 2,2-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane(BisAPAF)in supercritical CO2 to enhance interfacial properties. Chemical structures, surface elemental composition and functional groups, and surface morphology were characterized by FT-IR spectrometer, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), respectively. The mechanical properties of the samples were tested by a tensile tester. Static contact angle and microdebonding tests were used to characterize the wetting ability and interfacial shear strength (IFSS) of the fiber and epoxy resin. The results showed that the BisAPAF could be solved in scCO2 and introduced more groups, –NH2, –OH, and –CF3 on the fiber surface, resulting in the mechanical properties and the wettability of PBO fiber slightly improved. Moreover, the fiber surface roughness was also increased obviously. The IFSS between the modified PBO fiber and epoxy resin increased from 8.18 MPa to 31.4 MPa when the treating pressure was 14 MPa. In general, the method to modify PBO fibers surface using BisAPAF in scCO2 can effectively improve their interfacial properties.  相似文献   
55.
In the present work, the influence of porosity and boron on shear thickening behavior of hybrid mesoporous silica has been studied. Three different levels of boron modification were performed by varying the molar composition of boric acid viz., 1.5 mmol, 2.5 mmol, and 3.5 mmol in a co-condensation approach. The incorporation of boron in mesoporous silica network was confirmed by various techniques such as Fourier transform infra-red (FTIR), and 11B solid- state nuclear magnetic resonance (NMR) spectroscopy. The morphology and particle size were confirmed by using scanning and transmission electron microscopy. To evaluate the effect of boron and porosity on the shear thickening behavior, dispersions were prepared from mesoporous boron- modified silica (MSiB), control mesoporous silica (MSi), non-porous boron-modified silica (SiB), and control non-porous silica (Si) in polyethylene glycol. The shear thickening behavior was studied using steady shear rheology. The dispersion prepared from different loadings of synthesized MSiB containing 1.5 mmol boron showed more than 16 times increase in viscosity (657.7 Pa.s) compared to that of MSi (39.2 Pa.s) at a fairly low volume fraction (φ = 0.15) of silica. It is expected that the highly ordered mesoporous architecture of hybrid silica has improved the interaction between the particle and the dispersing medium through hydrogen bonding. The porous morphology of the hybrid mesoporous silica as well as the incorporation of boron in the silica network favors the formation of a frictional contact network, and a transition from continuous shear thickening (CST) to discontinuous shear thickening (DST) behavior was observed. Therefore, silica prepared via incorporation of boron as well as porosity can be material of interest in variety of applications, for example, soft body armors, sporting goods, and shear thickening electrolytes for high impact resistant batteries.  相似文献   
56.
The topology of the Ehrenfest force density was studied with Slater‐type orbitals (STO). At larger distances from the nuclei, STOs generate similar artefacts as noticed before with Gaussian‐type orbitals. The topology of the Ehrenfest force density was found to be mainly homeomorphic with the topology of the electron density. For the first time, reliable integrations of several properties over force density atomic basins were performed successfully. Integration of the electron density of a number of hydrides, fluorides, and chlorides of first row elements over force density basins indicate substantial differences between the partial charges of the atoms as compared with those obtained from electron density basins. Calculations on saturated hydrocarbons confirm that the electronegativity of carbon atoms increases with increasing geometrical strain. Atomic interaction lines are observed to exist in the Ehrenfest force density between the hydrogen atoms of several so‐called “congested” molecules, and also in some inclusion complexes of alkanes with helium. However, interaction lines are lacking in several other controversial cases. © 2015 Wiley Periodicals, Inc.  相似文献   
57.
In recent years, the essential work of fracture (EWF) method has been extensively employed for assessing a material's toughness by specific essential fracture work, especially for polymers showing ductile failure. However, most research has studied either the in-plane stress mode or the out-of-plane stress mode. To obtain a more in-depth understanding of the EWF theory, the specific essential and non-essential fracture work of polypropylene random copolymer (PP-R) was investigated in both in-plane stress mode and out-of-plane stress mode. The effects of ligament length, amount of pre-cracking and pre-cracking method on the specific essential and non-essential fracture work were explored. The specific essential fracture work obtained in both stress modes is compared and discussed.  相似文献   
58.
Studies are presented on dependency of dynamic interlaminar shear (ILS) strength on the experimental technique used for a typical plain weave E-glass/epoxy composite. Dynamic ILS strength was determined based on two experimental techniques, namely torsional split Hopkinson bar (TSHB) apparatus using thin walled tubular specimens and compressive split Hopkinson pressure bar (SHPB) apparatus using single lap specimens. The results obtained from these techniques are compared. In general, it is observed that dynamic ILS strength for composites obtained by TSHB testing using thin walled tubular specimens is lower than the dynamic ILS strength obtained using single lap specimens in compressive SHPB. The issues involved in TSHB testing of thin walled tubular specimens made of composites are discussed and the reasons for reduced dynamic ILS strength using thin walled tubular specimens are highlighted. Finite element analysis (FEA) of thin walled tubular specimens made of composite and resin subjected to quasi-static torsional loading is presented. Using FEA results, the reasons for lower ILS strength of composite thin walled tubular specimens are substantiated.  相似文献   
59.
Temperature dependent mechanical properties of poly(p-phenylene vinylene) (PPV) were investigated using quasi-static (QS) and dynamic nanoindentation (NI) at temperatures over the range of 25 to 100 °C. The reduced modulus decreased from about 4.40 GPa to 3.64 GPa over this temperature range. The plasticity indices at all measurement temperatures were lower than the critical value of 0.875, characterizing material “sink-in”, rather than “pile-up” during measurements. The plasticity index showed a non-monotonic trend, with a minimum value at around 70 °C. Analysis of indentation stress relaxation data, obtained at different temperatures, was also performed using generalized Maxwell viscoelastic models. From these analyses, a relaxation mode, with a characteristic relaxation time of approximately 0.5 s, was evident. The characteristic time remained relatively unchanged over the temperature range of 25 to 100 °C. However, the relaxation modulus associated with this mode showed the expected decrease with increase in temperature.  相似文献   
60.
利用酰胺化反应将聚苯胺(PANI)共价接枝到氧化石墨烯(GO)的表面,得到的杂化材料GO-PANI能很好地分散在常见的有机溶剂中。样品的XPS谱和红外光谱数据证实了在GO和PANI之间存在酰胺键。在316nm激光激发下,PANI和GO-PANI分别在420nm和416nm处显示出很强的荧光峰。GO-PANI的最大发射峰相对于PANI的发射峰蓝移了4nm,且荧光强度增强。开孔Z-扫描实验结果表明:与PANI相比,GO和PANI的共价键合使材料在532nm激光辐照下表现出更大的非线性消光系数和三阶非线性极化率虚部值,光限幅性能明显增强。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号